Earn Free Bitcoins in 10 minutes - BTC Peek - Earn Free ...

Gridcoin 5.0.0.0-Mandatory "Fern" Release

https://github.com/gridcoin-community/Gridcoin-Research/releases/tag/5.0.0.0
Finally! After over ten months of development and testing, "Fern" has arrived! This is a whopper. 240 pull requests merged. Essentially a complete rewrite that was started with the scraper (the "neural net" rewrite) in "Denise" has now been completed. Practically the ENTIRE Gridcoin specific codebase resting on top of the vanilla Bitcoin/Peercoin/Blackcoin vanilla PoS code has been rewritten. This removes the team requirement at last (see below), although there are many other important improvements besides that.
Fern was a monumental undertaking. We had to encode all of the old rules active for the v10 block protocol in new code and ensure that the new code was 100% compatible. This had to be done in such a way as to clear out all of the old spaghetti and ring-fence it with tightly controlled class implementations. We then wrote an entirely new, simplified ruleset for research rewards and reengineered contracts (which includes beacon management, polls, and voting) using properly classed code. The fundamentals of Gridcoin with this release are now on a very sound and maintainable footing, and the developers believe the codebase as updated here will serve as the fundamental basis for Gridcoin's future roadmap.
We have been testing this for MONTHS on testnet in various stages. The v10 (legacy) compatibility code has been running on testnet continuously as it was developed to ensure compatibility with existing nodes. During the last few months, we have done two private testnet forks and then the full public testnet testing for v11 code (the new protocol which is what Fern implements). The developers have also been running non-staking "sentinel" nodes on mainnet with this code to verify that the consensus rules are problem-free for the legacy compatibility code on the broader mainnet. We believe this amount of testing is going to result in a smooth rollout.
Given the amount of changes in Fern, I am presenting TWO changelogs below. One is high level, which summarizes the most significant changes in the protocol. The second changelog is the detailed one in the usual format, and gives you an inkling of the size of this release.

Highlights

Protocol

Note that the protocol changes will not become active until we cross the hard-fork transition height to v11, which has been set at 2053000. Given current average block spacing, this should happen around October 4, about one month from now.
Note that to get all of the beacons in the network on the new protocol, we are requiring ALL beacons to be validated. A two week (14 day) grace period is provided by the code, starting at the time of the transition height, for people currently holding a beacon to validate the beacon and prevent it from expiring. That means that EVERY CRUNCHER must advertise and validate their beacon AFTER the v11 transition (around Oct 4th) and BEFORE October 18th (or more precisely, 14 days from the actual date of the v11 transition). If you do not advertise and validate your beacon by this time, your beacon will expire and you will stop earning research rewards until you advertise and validate a new beacon. This process has been made much easier by a brand new beacon "wizard" that helps manage beacon advertisements and renewals. Once a beacon has been validated and is a v11 protocol beacon, the normal 180 day expiration rules apply. Note, however, that the 180 day expiration on research rewards has been removed with the Fern update. This means that while your beacon might expire after 180 days, your earned research rewards will be retained and can be claimed by advertising a beacon with the same CPID and going through the validation process again. In other words, you do not lose any earned research rewards if you do not stake a block within 180 days and keep your beacon up-to-date.
The transition height is also when the team requirement will be relaxed for the network.

GUI

Besides the beacon wizard, there are a number of improvements to the GUI, including new UI transaction types (and icons) for staking the superblock, sidestake sends, beacon advertisement, voting, poll creation, and transactions with a message. The main screen has been revamped with a better summary section, and better status icons. Several changes under the hood have improved GUI performance. And finally, the diagnostics have been revamped.

Blockchain

The wallet sync speed has been DRASTICALLY improved. A decent machine with a good network connection should be able to sync the entire mainnet blockchain in less than 4 hours. A fast machine with a really fast network connection and a good SSD can do it in about 2.5 hours. One of our goals was to reduce or eliminate the reliance on snapshots for mainnet, and I think we have accomplished that goal with the new sync speed. We have also streamlined the in-memory structures for the blockchain which shaves some memory use.
There are so many goodies here it is hard to summarize them all.
I would like to thank all of the contributors to this release, but especially thank @cyrossignol, whose incredible contributions formed the backbone of this release. I would also like to pay special thanks to @barton2526, @caraka, and @Quezacoatl1, who tirelessly helped during the testing and polishing phase on testnet with testing and repeated builds for all architectures.
The developers are proud to present this release to the community and we believe this represents the starting point for a true renaissance for Gridcoin!

Summary Changelog

Accrual

Changed

Most significantly, nodes calculate research rewards directly from the magnitudes in EACH superblock between stakes instead of using a two- or three- point average based on a CPID's current magnitude and the magnitude for the CPID when it last staked. For those long-timers in the community, this has been referred to as "Superblock Windows," and was first done in proof-of-concept form by @denravonska.

Removed

Beacons

Added

Changed

Removed

Unaltered

As a reminder:

Superblocks

Added

Changed

Removed

Voting

Added

Changed

Removed

Detailed Changelog

[5.0.0.0] 2020-09-03, mandatory, "Fern"

Added

Changed

Removed

Fixed

submitted by jamescowens to gridcoin [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

THEORY: Is it possible that miners are spamming the Bitcoin network with low fee transactions to generate more mining profits?

Hi all. I don't know enough about the technical details of the low-fee transactions that are spamming the network, and a possible correlation between those and the ability for minors to make a profit. My thinking, which may be horribly flawed, is that miners may be flooding the network with low fee transactions in order to produce a large quantity of quickly mineable blocks in order to gain extra rewards (or to get rewards more quickly than they might if mining only normal fee blocks)
Is this feasible? Or does a minor make just as much mining a normal fee block as they would a block that has a ridiculously low transaction fee?
I ask because I have heard many times about minors intentionally mining empty blocks to get the rewards. But I don't know if empty blocks relate directly to low-fee blocks?
Any technical insights you could provide would be greatly appreciated, as I would hate to suggest something that might have no foundation or basis.
With thanks for your suggestions on how this might be possible, or how I might be completely off base here.
Babs
submitted by babsamajabsma to Bitcoin [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

IQ.cash smart trading and mining

IQ.cash smart trading and mining
https://preview.redd.it/z0xjotzxta451.png?width=724&format=png&auto=webp&s=a0c223a017dd58aa54d506e51d041f5820db4a3b
Everyone from time to time has an interest in entering into a variety of investments with the aim of earning income from their home or comfort as long as they do not have to go through an inefficient employment system. This is the result of technological developments around, and to achieve this, many fall victim to con artists who promise a platform to get a comfortable income. Today I will introduce the ICO IQ cash project, one of the PLATFORM THAT ALLOWS YOU TO GET IN YOUR COMFORT.

What is IQ cash

IQ Cash is a cryptocurrency that may be used to run and increase further exposure to what has been offered. Making it is to remove from where to stop because it has been made and decided to go further because it was not possible. IQ can be used to get a place that has to be part of this trend, even if we are looking for an open place where investors can do the same with other investors. The aim is to give everyone not agreement about most and at least ROI in 300% or more of you in passive form. The IQCash company is truly unique because it will allow users to get the maximum return on investment. IQ cash is a company that will be able to combine the best and most perfect opportunities to lead exchanges in the cryptocurrency market. With IQ network Masternode you can avoid a variety of situations, problems, and unusual problems, and such a process will eliminate any deficiencies. The IQCash platform is also suitable for traders who already have experience in their activities, and of course for novice traders who have just entered the door of buying and selling crypto. No one will experience problems, everyone will only admire sales using IQCash. Learn more — http://iq.cash.

Why I chose to take a position on IQ. Cash?

Because there are many kinds of benefits for investors. except for profits up to 300%, I will be able to introduce all profits to investors. 1. Security Cryptocurrency now has a variant of active users in the world and also the number is growing rapidly! User accounts cannot be blocked, and funds cannot be accessed by anyone but the owner. 2.MASTERNODE Iq. Cash uses the consensus of the PoW algorithm with the support of the Masternode system. This makes the project economically attractive to mine 43% and provides 57% of passive income for Masternode holders. Masternode provides network integrity, transaction anonymity, and transaction speed. ways to get Masternode: You must take the position of 3000 IQ. 3. ANONIMITY The anonymity of transactions in the system is provided by the PrivateSend algorithm. Users can trust the system completely. they don’t need to worry about third-party access to data because the system encrypts data securely when transferring and receiving assets. 4. ASIC RESISTANCE Technology that solves problems accelerates the expansion of network complexity significantly when using ASIC (compared to CPU usage). IQ Cash Network uses the NeoScrypt algorithm to solve this problem. 5. TRANSACTION speed High-speed transactions are guaranteed by InstantSend data exchange across networks. The transaction time is about 5 seconds. 6. IQ Network decentralized. Cash implies weaknesses to create sites that combine the dominant influence on other network members. Effects on coins that are excluded due to their release are prohibited, and extra emission is not provided.

How to get an annual profit of 300%.


https://preview.redd.it/updhrmtzta451.png?width=793&format=png&auto=webp&s=eccc7d14b5d2e479f5d1ed2de84d14bfc72b0742
  1. Buy 3,000 IQ or better 3001 because 1 is spent on commission transactions.
  2. Download the Files application (Android or iOS) for mobile devices Open IQ. Cash Coin Purses in the application.
  3. Enter 3,001 IQ in the wallet and create a MasterNode server and deposit. Pay for hosting service providers on Flits.
  4. You will be charged EUR 1.99 per month, get profit and spend on your needs or create the next MasterNode to extend profits in line with the number of MasterNode!

How do I buy cash IQ

Go to the acquisition page and you will see an open window where you will pay the amount of coins you want to shop for. You don’t need to worry about the next steps because we will arrange the rest by buying IQ coins. Cash and FLS (to close Flits services) from the exchange.
  1. Fill in «IQ wallet address» and «FLS wallet address» in the Flits application.
  2. get a package. One package includes 3000 IQ. Cash and Bitcoin services for Flits for five months. When the cash transfer is complete, open the IQ-MasterNode window and make it comparable to the coins purchased (3000 IQ for 1 MasterNode).
  3. activate MasterNode and get profit. You will follow the current exchange rate on the Flits application or with any crypto trading coins.

Wallets and Exchanges:

The IQ cryptocurrency wallet is available on all three Windows, Mac and Linux platforms.

Token Information:

• Algorithm: PoW, NeoScrypt (ASIC resistance) • Block time: 120 seconds • Prizes per block: 25 IQ • Block Block Reward Distribution: 57% to Masternodes and 43% to Miners, both taken from the formula (Reward-6%), where 6% is reserved for the DAO system • Block rewards can be sliced 12% every year • Max coins: 56 900,000 IQ • Premine: 7 900 000 IQ • Mining within 25 years

Conclusion

IQ.cash has studied the crypto market well enough to draw the model. This uses the mining system and MasterNode. The mining protocol will attract contributors exponentially while MasterNode will help ensure network speed, governance, and sustainability. Because MasterNode is also a cryptocurrency node, becoming a MasterNode on the IQ.cash system requires an investment commitment. This is a way to make a profit in this system. Investment is rewarded with a commission for each trade made by the system. This will help ensure that enough users try to become a MasterNode and thus make a profit without having to leave the comfort of their home.

FOR MORE INFORMATION ABOUT IQ.CASH:

Website: https://iq.cash/ Whitepaper: https://iq.cash/iqcash_whitepaper.pdf Telegram: https://t.me/IQ_cash Twitter: https://twitter.com/IQ_Crypto Bitcointalk: https://bitcointalk.org/index.php?topic=4360591 YouTube: https://www.youtube.com/finexpo Github: https://github.com/IQ-Cash/iqcash/releases Disputes: https://discord.gg/qekuX6r Ann Thread: https://bitcointalk.org/index.php?topic=5240221.0 Explorer: https://explorer.iq.cash Mining Pool: https://pool.iq.cash Bithumb Contest: https://support.bithumb.pro/hc/ru/articles/360046055014--Event-100-000-IQ-Grand-Prize-Pool
Username : faxmon Link : https://bitcointalk.org/index.php?action=profile;u=173709
I.Q cash wallet : QU5m19f7AVY99cMVzU2CYLoAV15FRMxuLY
submitted by kriptaannarhist to u/kriptaannarhist [link] [comments]

04-28 10:44 - 'Earn free BTC through world's first BTC browser miner!' (self.Bitcoin) by /u/rounakrb removed from /r/Bitcoin within 0-6min

'''
Just use this as a browser for day to day searches and websites, while it starts mining BTC. It doesn't consume battery, as it mines based on SDP (Server Dependent Mining).
Yes I agree that on phones mining would be slow compared to PC's, but it's legit unlike so many who promise such fake high returns.
Just half an hour browsing, and I have earned 0.001 USD (in BTC). So yes it works. Available on Mac, Windows, iOS, Android. You could earn more on desktops.
Here's the link:
[link]1
'''
Earn free BTC through world's first BTC browser miner!
Go1dfish undelete link
unreddit undelete link
Author: rounakrb
1: c*y*tota**r*w*er*com/1277*622?f=sn
Unknown links are censored to prevent spreading illicit content.
submitted by removalbot to removalbot [link] [comments]

51% attacks are morally justifiable

In this short post I want to set out my case for the moral justifiability of 51% attacks against proof of work cryptocurrencies. In the past, a 51% attack was a theoretical construct that most people didn´t seem to think would be practically achievable or lucrative. This has now changed, as hashpower can be rented on sites like Nicehash and Mining Rig Rentals for a few hours at a time. The attack delivers the attacker two prominent opportunities:
-You can orphan blocks of ¨legitimate¨ miners. This essentially means that whatever work was produced by legitimate miners during your attack became worthless. Mine a secret chain of two hours worth of blocks, release it and you orphaned 2 hours worth of blocks by your competitors. By the time most of the miners have noticed their blocks were orphaned in an attack, their nodes will have been automatically mining on your own chain for a while and it will be too late for them to do anything about it. The amount of money they lost would be equivalent to the amount you had to spend to produce your chain. Because mining is an industry with tight margins, the economic impact on these miners can be very big. The cost may be sufficient in case of a very long attack, to persuade them to quit their endeavor and get a real job.
-The more important opportunity is that you´re able to double spend your coins. This is potentially, incredibly lucrative. How lucrative it is tends to depend primarily on the inflation rate of a cryptocurrency. A low inflation rate means relatively little ¨work¨ is done to maintain the security of the system. A high inflation rate on the other hand, turns the cryptocurrency into a very poor long-term investment. As a consequence, most cryptocurrencies face declining inflation rates, that delay the problem of their ultimately unsustainability into the future. The bank of international settlements explains this issue here.
When it comes to the moral justification of a 51% attack, we first have to ask ourselves why proof of work is morally unjustifiable. There are two main reasons for this:
-Proof of work has an enormous environmental impact, that ensures future generations will have to deal with the dramatic consequences of climate change. There is no proper justification for this environmental impact, as it delivers no clear benefits over existing payment systems other than the ability to carry out morally unjustifiable actions like blackmail.
-Proof of work is fundamentally unsustainable, because of the economic burden it places on participants in cryptocurrency schemes. Cryptocurrencies can´t produce wealth out of thin air. The people who get rich from a cryptocurrency becomes rich, due to the fact that other people step in later. In this sense we´re dealing with a pyramid scheme, but the difference from regular pyramid schemes lies in the fact that huge sums of wealth are not merely redistributed, but destroyed, to sustain the scheme. The cost of the work to sustain the scheme is bigger than you might expect, because the reality is that relatively little money has entered bitcoin. JP Morgan claims that for the crypto assets at large, a fiat amplifier of 117.5 is present, as a purported $2 billion in net inflow pushed Bitcoin’s market capitalization from $15 billion to $250 billion. You have to consider that the Digiconomist estimates that $2.6 billion dollar leaves the Bitcoin scheme on an annual basis, in the form of mining costs to sustain Bitcoin. The vast majority of retail customers who entered this scheme ended up losing money from it. In some cases this lead to suicides.
The fact that proof of work is morally unjustifiable doesn´t directly lead to a moral justification for a 51% attack. After all a sane society would use government intervention to eliminate the decentralized ponzi schemes that are cryptocurrencies. There are a few things that need to be considered however:
-Governments have so far failed in their responsibility to address the cryptocurrency schemes. Instead you tend to see officials insist that proof of work might suck and most cryptocurrency is a scam, but ¨blockchain technology¨ will somehow change the world for the better. Most libertarians who saw these schemes emerge insisted that it´s stupid to participate in them because the government would eventually ban them and round up the people who participated in them. This didn´t happen because of the logistical difficulty of suppressing these schemes (anyone with an internet connection can set one up) as well as the fact that suppressing them would lend credence to the anti-government anarcho-capitalist ideology on which these schemes are based. Goverments might say ¨these schemes facilitate crime, ruin the environment and redistribute wealth from naive individuals to scammers¨, but anarcho-capitalists would insist that governments have grown so tyrannical that they want to ban you from exchanging numbers on computers.
-Because cryptocurrency is fundamentally an online social arrangement, governments have very limited influence over the phenomenon. Binance seeks to become a stateless organization, not subject to the jurisdiction of any particular government. Just as with regular money laundering and tax evasion that hides in small nations that can earn huge sums of money by facilitating these practises, governments are dependent on the actions of individuals to address these practices. Whistleblowers released the panama papers and the tax evasion by German individuals through Swiss bank accounts. Through such individuals, the phenomenon could be properly addressed. In a similar manner, cryptocurrency schemes will need to be addressed through the actions of individuals who recognize the damage these schemes cause to the fabric of society.
-The very nature of a 51% attack means that it primarily punishes those who set up and facilitate the cryptocurrency scheme in the first place. The miners who pollute our environment to satiate their own greed are bankrupted by the fact that their blocks are orphaned. The exchange operators are bankrupted due to double-spend attacks against the scams that they facilitate. When this happens, the cryptocurrency in question should lose value, which then destroys the incentive to devote huge sums of electricity to it.
Finally, there´s the question of whether 51% attacks are viable as a response to cryptocurrency. There´s the obvious problem you run into, that the biggest and oldest scams are the most difficult to shut down. In addition, cryptocurrencies that fell victim to an attack tend to move towards a checkpoint system. However, there are a few things that need to be considered here:
-51% attacks against small cryptocurrencies might not have a huge impact, but their benefit is nonetheless apparent. Most of the new scams don´t require participants to mine, instead the new schemes generally depend on ¨staking¨. If people had not engage in 51% attacks, the environmental impact would have been even bigger now.
-51% attacks against currencies that implement checkpointing are not impossible, if the checkpoints are decentrally produced. What happens in that case is a chain split, as long as the hostile chain is released at the right time. This would mean that different exchanges may get stuck on different forks, which would still allow people to double spend their cryptocurrency.
-There are other attacks that can be used against proof of work cryptocurrencies. The most important one is the block withholding attack. It´s possible for people who dislike a cryptocurrency to join a pool and to start mining. However, whenever the miner finds a valid solution that would produce a block, he fails to share the solution with the pool. This costs money for the pool operator, but it can be lucrative for the actor if he also operates a competing pool himself. In the best case it leads to miners moving to his pool, which then potentially allows him to execute a 51% attack against the cryptocurrency.
-It´s possible to put up a 51% attack bounty, allowing others to do the work for you. This works as following. You make transaction A : 100 bitcoin to exchange X, for a fee of 0.001 BTC. Once this transaction has been included in a block, you immediately broadcast a conflicting transaction with another node: You´ŕe sending those 100 bitcoin to your own wallet, but you´re also including a 50 bitcoin fee for the miners. The miners now have a strong incentive to disregard the valid chain and to start mining a new chain on an older block that can still include your conflicting transaction. Provided that pool operators are rational economic agents, they should grab the opportunity.
-Selfish mining in combination with a Sybil attack allows someone to eclipse the rest of the network, while controlling less than 51% of the hashrate. Your malicious nodes will simply refuse to propagante blocks of your competitors, thereby giving you more time to release your own block. Selfish mining will always be possible with 33% of the hashrate and as far as I can tell there are no pathways known currently to make the scheme impossible for people with 25% of the hashrate. This potentially makes a 51% attacks lucrative without having to carry out double-spend attacks against exchanges. Although double spending is a form of theft, it´s not clear to me whether a selfish mining attack would get you into legal trouble or not.

Conclusion:

The dreaded 51% attack is a morally justifiable and potentially lucrative solution to the Nakamoto scheme.
submitted by milkversussoy to Buttcoin [link] [comments]

Bitcoin Mining Profitability: How Long Does it Take to Mine One Bitcoin in 2019?

When it comes to Bitcoin (BTC) mining, the major questions on people’s minds are “how profitable is Bitcoin mining” and “how long would it take to mine one Bitcoin?” To answer these questions, we need to take an in-depth look at the current state of the Bitcoin mining industry — and how it has changed — over the last several years.
Bitcoin mining is, essentially, the process of participating in Bitcoin’s underlying security mechanism — known as proof-of-work — to help secure the Bitcoin blockchain. In return, participants receive compensation in bitcoins (BTC).
When you participate in Bitcoin mining, you are essentially searching for blocks by crunching complex cryptographic challenges using your mining hardware. Once a block is discovered, new transactions are recorded and verified within the block and the block discoverer receives the block rewards — currently set at 12.5 BTC — as well as the transactions fees for the transactions included within the block.
Once the maximum supply of 21 million Bitcoins has been mined, no further Bitcoins will ever come into existence. This property makes Bitcoin deflationary, something which many argue will inevitably increase the value of each Bitcoin unit as it becomes more scarce due to increased global adoption.
The limited supply of Bitcoin is also one of the reasons why Bitcoin mining has become so popular. In previous years, Bitcoin mining proved to be a lucrative investment option — netting miners with several fold returns on their investment with relatively little effort.
bitcoin mining hardware
Mining Hardware
The mining hardware you choose will mostly depend on your circumstances — in terms of budget, location and electricity costs. Since the amount of hashing power you can dedicate to the mining process is directly correlated with how much Bitcoin you will mine per day, it is wise to ensure your hardware is still competitive in 2019.
Bitcoin uses SHA256 as its mining algorithm. Because of this, only hardware compatible with this algorithm can be used to mine Bitcoin. Although it is technically possible to mine Bitcoin on your current computer hardware — using your CPU or GPU — this will almost certainly not generate a positive return on your investment and you may end up damaging your device.
The most cost-effective way to mine Bitcoin in 2019 is using application-specific integrated circuit (ASIC) mining hardware. These are specially-designed machines that offer much higher performance per watt than typical computers and have been an absolutely essential purchase for anybody looking to get into Bitcoin mining since the first Avalon ASICs were shipped in 2013.
When it comes to selecting Bitcoin mining hardware, there are several main parameters to consider — though the importance of each of these may vary based on personal circumstances and budget.
Performance per Watt
When it comes to Bitcoin mining, performance per watt is a measure of how many gigahashes per watt a machine is capable of and is, hence, a simple measure of its efficiency. Since electricity costs are likely to be one of the largest expenses when mining Bitcoin, it is usually a good idea to ensure that you are getting good performance per watt out of your hardware.
Ideally, your mining hardware would be highly efficient, allowing it to mine Bitcoin with lower energy requirements — though this will need to be balanced with acquisition costs, as often the most efficient hardware is also the most expensive. This means it may take longer to see a return on investment.
In countries with cheap electricity, performance per watt is often less of a concern than acquisition costs and price-performance ratio. In most countries, operating outdated mining hardware is typically cost prohibitive, as energy costs outweigh the income generated by the mining equipment.
However, this may not be the case for those operating in countries with extremely cheap electricity — such as Kuwait and Venezuela — as even older equipment can still be profitable. Similarly, miners with a free energy surplus, such as from wind or solar electric generators, can benefit from the minimal gains offered by still running outdated hardware.
Longevity
The lifetime of mining hardware also plays a critical role in determining how profitable your mining venture will be. It’s always a good idea to do whatever possible to ensure it runs as smoothly as possible.
Since mining equipment tends to run at a full (or almost full) load for extended periods, they also tend to break down and fail more frequently than most electronics — which can seriously damage your profitability. Equipment failure is even more common when purchasing second-hand equipment. Since warranty claims are often challenging, it can often take a long time to receive a warranty replacement.
Price-Performance Ratio
In many cases, one of the major criteria used to select mining hardware is the price-performance ratio — a measure of how much performance a machine outputs per unit price. In the case of cryptocurrency mining hardware, this is commonly expressed as gigahashes per dollar or GH/$.
Under ideal circumstances, the mining hardware would have a high price-performance ratio, ensuring you get a lot of bang for your buck. However, this must also be considered in combination with the acquisition costs and the expected lifetime of the machine — since the absolute most powerful machines are not always the cheapest or the most energy efficient.
Acquisition Costs
Acquisition costs are almost always the biggest barrier to entry for most Bitcoin miners since most top-end mining hardware costs several thousand dollars. This problem is further compounded by the fact that many hardware manufacturers offer discounts for bulk purchases, allowing those with deeper pockets to achieve a better price-performance ratio.
Acquisition costs include all the costs involved in purchasing any mining equipment, including hardware costs, shipping costs, import duties, and any further costs. For example, many ASIC miners do not include a power supply — which can be another considerable expense, since the 1,000W+ power supplies usually required tend to cost several hundred dollars alone.
Ensuring your equipment runs smoothly can also add in additional costs, such as cooling and maintenance expenses. In addition, some miners may want to invest in uninterruptible power supplies to ensure their hardware keeps running — even if the power fails temporarily.
asic mining
Current Generation Hardware
One of the most recent additions to the Bitcoin mining hardware market is the Ebang Ebit E11++, which was released in October 2018. Using a 10nm fabrication process for its processors, the Ebit E11++ is able to achieve one of the highest hash rates on the market at 44TH/s.
In terms of efficiency, the Ebang Ebit E11++ is arguably the best on the market, offering 44TH/s of hash rate while drawing just 1,980W of power, offering 22.2GH/W performance. However, as of writing, the Ebang Ebit E11++ is out of stock until March 31, 2019 — while its price of $2,024 (excluding shipping) may make it prohibitively expensive for those first getting involved with Bitcoin mining.
Another popular choice is the ASICminer 8 Nano, a machine released in October 2018 that offers 44TH/s for $3,900 excluding shipping. The ASICminer 8 Nano draws 2,100W of power, giving it an efficiency of almost 21GH/W — slightly lower than the Ebit E11++ while costing almost double the price. However, unlike the E11++, the 8 Nano is actually in stock and available to purchase.
ASICminer also offers the 8 Nano Pro, a machine launched in mid-2018 that offers 80 TH/s of hash rate for $9,500 (excluding shipping). However, unlike the Ebit E11++ and 8 Nano, the minimum order quantity for the 8 Nano Pro is curiously set at five, meaning you will need to lay out a minimum of $47,500 in order to actually get your hands on one (or five).
While the 8 Nano Pro doesn’t offer the same performance per watt as the Ebit E11+ or AICMiner 8 Nano, it is one of the quieter miners on this list, making it more suitable for a home or office environment. That being said, the ASICminer 8 Nano Pro is easily the most expensive miner per TH on this list — costing a whopping $118.75/TH, compared to the $46/TH offered by the E11++ and $88.64 offered by the 8 Nano.
The latest hardware on this list is the Innosilicon T3 43T, which is currently available for pre-order at $2,279, and estimated to ship in March 2019. Offering 43TH/s of performance at 2,100W, the T3 43T comes in at an efficiency of 20.4GH/W, which is around 10 percent less energy efficient than the Ebit E11++.
The T3 43T also has a minimum order quantity of three units, making the minimum acquisition cost $6837 + shipping for preorders. All in all, the T3 43T is more costly and less efficient than the E11++ but may arrive slightly earlier since Ebang will not ship the E11++ units until at least end March 29, 2019.
Finally, this list would not be complete without including Bitmain’s latest offering, the Antminer S15-28TH/s, which — as its name suggests — offers 28TH/s of hash power while drawing just under 1600W at the wall. The Antminer S15 is one of the only SHA256 miners to use 7nm processors, making it somewhat smaller than some of the other devices on this list.
Like most pieces of top-end Bitcoin mining hardware, the Antminer S15 27TH/s model is currently sold out, with current orders not shipping until mid-February 2019. However, the S15 is offered at a significantly lower price than many of its competitors at just $1020 (excluding shipping), with no minimum quantity restriction. At these rates, the Antminer comes in at just $37.78/TH — though its energy efficiency is a much less impressive 17.5GH/W.
Mining Hardware Mining Hardware Comparison
Performance (GH/W) Price Performance Ratio ($/TH)
Ebang Ebit E11++ 22.2GH/W $46/TH
ASICminer 8 Nano 21GH/W $88.64/TH
ASICminer 8 Nano Pro 19GH/W $118.75/TH
Innosilicon T3 43T 20.4GH/W $53/TH
Antminer S15-28TH/s 17.5GH/W $37.78/TH
How To Select a Good Mining Pool
Mining pools are platforms that allow miners to pool their resources together to achieve a higher collective hash rate — which, in turn, allows the collective to mine more blocks than they would be able to achieve alone.
Typically, these mining pools will distribute block rewards to contributing miners based on the proportion of the hash rate they supply. If a pool contributing a total of 20 TH/s of hash rate successfully mines the next block, a user responsible for 10 percent of this hash rate will receive 10 percent of the 12.5 BTC reward.
Pools essentially allow smaller miners to compete with large private mining organizations by ensuring that the collective hash rate is high enough to successfully mine blocks on regular basis. Without operating through a mining pool, many miners would be unlikely to discover any blocks at all — due to only contributing a tiny fraction of the overall Bitcoin hash rate.
While it is quite possible to be successful mining without a pool, this typically requires an extremely large mining operation and is usually not recommended — unless you have enough hash rate to mine blocks on a regular basis.
Although it is technically possible to discover blocks mining solo and keep the entire 12.5 BTC reward for yourself, the odds of this actually occurring are practically zero — making pool collaboration practically the only way to compete in 2019 and beyond.
Selecting the best pool for you can be a challenging job since the vast majority of pools are quite similar and offer similar features and comparable fees. Because of this, we have broken down the qualities you should be looking for in a new pool into four categories; reputation, hash rate, pool fees, and usability/features:
Reputation
The reputation of a pool is one of the most important factors in selecting the pool that is best for you. Well-reputed pools will tend to be much larger than newer or less well-established pools since few pools with a poor reputation can stand the test of time.
Well-reputed pools also tend to be more transparent about their operation, many of which provide tools to ensure that each user is getting the correct reward based on the hash rate contributed. By using only pools with a great reputation, you also ensure your hash rate is not being used for nefarious purposes — such as powering a 51 percent attack.
When comparing a list of pools that appear suitable for you, it is a wise move to read their user reviews before making your choice — ensuring you don’t end up mining at a pool that steals your hard-fought earnings.
Hash Rate
When it comes to mining Bitcoin, the probability of discovering the next block is directly related to the amount of hashing power you contribute to the network. Because of this, one of the major features you should be considering when selecting your pool is its total hash rate — which is often closely related to the proportion of new blocks mined by the pool
Since the total hash rate of a pool is directly related to how quickly it discovers new blocks, this means the largest pools tend to discover a relative majority of blocks — leading to more regular rewards. However, the very largest pools also tend the have higher fees but often make up for this with sheer success and additional features.
Sometimes, some of the largest pools have a minimum hash rate requirement ù leaving some of the smaller miners left out of the loop. Although smaller pools typically have more relaxed requirements with reduced performance thresholds, these pools may be only slightly more profitable than mining solo.
Pool Fees
When choosing a suitable pool, typically one of the major considerations is its fees. Typically, most pools will charge a small fee that is deducted from your earnings and is usually around 1-2 percent — but sometimes slightly lower or higher.
There are also pools that offer 0 percent fees. However, these are often much smaller than the major pools and tend to make their money in a different way — such as through monthly subscriptions or donations.
Ideally, you will choose the pool that offers the best balance of fees to other features. Usually, the pool with the absolute lowest fees is not the best choice. Additionally, pools with the lowest fees often have the highest withdrawal minimums — making pool hopping uneconomical for most.
Usability and Features
When first starting out with Bitcoin mining, learning how to set up a pool and navigating through the settings can be a challenge. Because of this, several pools target their services to newer users by offering a simple to navigate user interface and providing detailed learning resources and prompt customer support.
However, for more experienced miners, simple pools don’t tend to offer a variety of features needed to maximize profitability. For example, although many mining pools focus their entire hash rate towards mining a single cryptocurrency, some are large enough to offer additional options — allowing users to mine other SHA256 coins such as Bitcoin Cash (BCH) or Fantom if they choose.
These pools are technically more challenging to use and mostly designed for those familiar with mining, happy to hop from coin to coin mining whichever is most profitable at the time. There are even some exchanges that automatically direct their combined hash rate at the most profitable cryptocurrency — taking the guesswork out of the equation.
bitcoin mining pool
Best Mining Pools for 2019
The Bitcoin mining pool industry has a large number of players, but the vast majority of the Bitcoin hash rate is concentrated within just a few pools. Currently, there are dozens of suitable pools to choose from — but we have selected just a few of the best to help get you started on your journey.
Slushpool was the first Bitcoin mining pool released, being launched way back in 2010 under the name “Bitcoin Pooled Mining Server.” Since then, Slushpool has grown into one of the most popular pools around — currently accounting for just under 10 percent of the total Bitcoin hash rate.
Although Slushpool isn’t one of the very largest pools, it does offer a newbie-friendly interface alongside more advanced features for those that need them. The pool has moderately high fees of 2 percent but offers servers in several countries — including the U.S., Europe, China, and Japan — giving it a good balance of fees to features.
BTC.com is another potential candidate for your pool and currently stands as the largest public Bitcoin mining pool. It is responsible for mining around 17 percent of new blocks. Being the largest public mining pool provides users with a sense of security, ensuring blocks are mined regularly and a stable income is made.
Image courtesy of Blockchain.info.
BTC.com is owned by Bitmain, a company that manufacturers mining hardware, and charges a 1.5 percent fees — placing it squarely in the middle-tier in terms of fees. Unlike other platforms, BTC.com uses its own payment structure known as FPPS (Full Pay Per Share), which means miners also receive a share of the transaction fees included within mined blocks — making it slightly more profitable than standard payment per share (PPS) pools.
Another great option is Antpool, a mining pool that supports mining services for 10 different cryptocurrencies, including Bitcoin, Litecoin (LTC) and Ethereum (ETH). AntPool frequently trades places with BTC.com as the largest Bitcoin mining pool. However, as of this writing, it occupies the title of the third-largest public mining pool.
What sets Antpool apart from other pools is the ability to choose your own fee system — including PPS, PPS+, and PPLNS. If you choose PPLNS, using Antpool is free but you will not receive any transaction fees from any blocks mined. Antpool also offers regular payouts and has a low minimum payout of just 0.001 BTC, making it suitable for smaller miners.
Last on the list of the best Bitcoin mining pools in 2019 is the Bitcoin.com mining pool. Although this is one of the smaller pools available, the Bitcoin.com pool has some redeeming features that make it worth a look. It offers mining contracts, allowing you to test out Bitcoin mining before investing in mining equipment of your own. According to Bitcoin.com, they are the highest paying Pay Per Share (PPS) pool in the world, offering up to 98 percent block rewards as well as automatic switching between BTC and BCH mining to optimize profitability.

Electricity Costs
While your mining hardware is most important when it comes to how much BTC you can earn when mining, your electricity costs are usually the largest additional expense. With electricity costs often varying dramatically between countries, ensuring you are on the best cost-per-KWh plan available will help to keep costs down when mining.
Most commonly, large mining operations will be set up in countries where electricity costs are the lowest — such as Iceland, India, and Ukraine. Since China has one of the lowest energy costs in the world, it was previously the epicenter of Bitcoin mining. However, since the government began cracking down on cryptocurrencies, it has largely fallen out of favor with miners.
Technically, Venezuela is one of the cheapest countries in the world in terms of electricity, with the government heavily subsidizing these energy costs — while Bitcoin offers an escape from the hyperinflation suffered by the Venezuelan bolivar. Despite this, importing mining hardware into the country is a costly endeavor, making it impractical for many people.
Finding ways to lower your electricity costs is one of the best ways to improve your mining profitability. This can include investing in renewable energy sources such as solar, geothermal, or wind — which can yield increased profitability over the long term.
if you are looking to buy bitcoin mining equipment here is some links:

Model Antminer S17 Pro (56Th) from Bitmain mining SHA-256 algorithm with a maximum hashrate of 56Th/s for a power consumption of 2385W.
https://miningwholesale.eu/product/bitmain-antminer-s17-pro-56th-copy/?wpam_id=17
Model Antminer S9K from Bitmain mining SHA-256 algorithm with a maximum hashrate of 14Th/s for a power consumption of 1323W.
https://miningwholesale.eu/product/bitmain-antminer-s9k-14-th-s/?wpam_id=17
Model T2T 30Tfrom Innosilicon mining SHA-256 algorithm with a maximum hashrate of 30Th/s for a power consumption of 2200W.
https://miningwholesale.eu/product/innosilicon-t2t-30t/?wpam_id=17
mining wholesale website:
https://miningwholesale.eu/?wpam_id=17
submitted by mohamadk to Bitcoin [link] [comments]

Proposed method to email crypto-coins directly.

Below are some ideas I have been working on to allow direct off-blockchain transfer of Bitcoin Private Keys while preventing Double-Spend and Counterfeiting . There is a reference to tamper-proof Physical Bitcoin as DA BOMB- Directly Available Bitcoin On Metal Banknotes. These Physical Bitcoins and their digitally encrypted representations are the basis for off-blockchain exchange of value. Off-Blockchain exchanges are completely private and as fast as sending an email.

FAST BITCOIN

Daily settlement between corporations, instant settlement on trading or funded shopping channels, physical bitcoin possession for investors .
Each platform which offers FAST BITCOIN will purchase a large amount of DA BOMB to power their digital envelope re-sale network. All networks will be compatible and fungible assets composed of.
When a customer places an order for DA BOMB I load a certain amount of BTC in various denominations onto a selection of bitcoin wallets, which are then manufactured as physical bitcoin.
This amount of BTC is the amount this customer can spend on the FAST BITCOIN network.
The Bitcoin the customer spends never moves on the BTC Blockchain.
The envelope containing the customer’s BTC is credited or debited a certain combination of addresses that contain a known amount of BTC, adding up to the exact amount of the transaction.
Transactions can only be made in ROUND NUMBERS of a certain resolution, such as 0.0001 BTC , and the resolution will be finer at a later date to account for the rise of value of BTC in the future.
The contents of a customer’s envelope will be maintained to allow for making change and to account for his spending or funding of his account.
The main issuer of FAST BITCOIN will be Satoshi Bitcoin Incorporated, with other platforms buying enough DA BOMB to issue their own FAST BITCOIN on their own shopping platforms.
Customers can always write to the platform and request that their remaining envelope balance be mailed to their physical address.
The envelope contents are tracked on a separate blockchain, the FAST BITCOIN blockchain.
Customers can use their physical bitcoin like paper money, or break the hologram seal and view the private key to use as regular bitcoin on the bitcoin blockchain.
Only TRUSTED NODES are on the FAST BITCOIN Blockchain. The Network is composed of the corporate members who offer FAST BITCOIN shopping at their websites, and join by invitation only. Large networks can fuel their own branded shopping tokens with FAST BITCOIN after paying a co-branding fee, or simply use FAST BITCOIN without re-branding to their own token name.
Software can equate all prices at a website to the token value of choice on the platform, so that the shopper may make purchases via FAST BITCOIN while referring to prices in stable fiat equivalent tokens, or re-branded token values.
The customer’s purchasing power varies with the price of Bitcoin, but the visible prices remain stable.
The customer may buy a StableCoin (not Tethers) to fund all or part of their account, or switch from BTC to StableCoin at will; or let the system do this for him. BTC going up, funding remains in BTC, BTC going down, Funding switches too StableCoin.
A purely electronic version of FAST BITCOIN will rely on a hardware device to store the private keys offline and always in encrypted form when connected to the internet.
There is object “A” : the FAST BITCOIN Wallet
There is object “B” : the individual private keys
The system works with a combination of Master System Key Encryption and Asymmetrical Key Encryption.
The Hardware device is called a SPLIT WALLET. It is a combination of a HOT WALLET and a COLD WALLET. The two halves of the split wallet can only communicate with each other when the device is unplugged from the device being used to access the Internet.
The Master System Key resides on the Cold Wallet and can’t be viewed without destroying the function of the Hardware Wallet.
To send bitcoin to a person on the network, the hardware wallet takes the addresses needed to add up to the desired amount and encrypts them with the PUBLIC KEY of the receiving device.
The BITCOIN CASH BLOCKCHAIN is used as a KEY SERVER to store the PUBLIC KEY of every device manufactured, linked to its registration number and owner identity. The OWNER IDENTITY is an EMAIL ADDRESS which is [[email protected]_BITCOIN.COM](mailto:[email protected]_bitcoin.com) .
The addresses are encrypted by the SYSTEM MASTER KEY , then by the RECIPIENT PUBLIC KEY and emailed to the above email address.
The whole network is sustained by a peer-to-peer email remailer network. Software on the machine used by the hardware device to connect to the INTERNET is designed to run a peer-to-peer email remailer node.
As well as sending the recipient an email via the re-mailer network, an entry is made on the BITCOIN CASH BLOCKCHAIN containing the double encrypted bitcoin private keys, recipient email address, and transaction identifier . This also contains the device registration number as part of the owner email address.
Thus even if the domain is blocked from sending email the information needed to use the bitcoin is available from the data stored on the BITCOIN CASH BLOCKCHAIN.
The value of Bitcoin Cash does not impact the cost of sending bitcoin, since the transaction sizes to record data on its blockchain are very small.

When FAST BITCOIN is sent to a recipient, he must plug his hardware device into a laptop, phone, or other internet device to download the keys to the device. At this time while the hardware device is still connected to the internet the just received FAST BITCOIN will not yet be available to spend. It will show on the device as STILL ENCRYPTED. The user unplugs the device from the internet and then transfers the amount from the COLD SIDE to the HOT SIDE of his wallet while offline. If he wishes he may leave this amount on the COLD SIDE or transfer up to the entire contents of the SPLIT WALLET to the HOT SIDE to enable immediate spending as soon as connected to the internet.
The COLD SIDE contains the SYSTEM MASTER KEY and decrypts the PRIVATE BITCOIN KEYS in order to enable spending.
The hardware device checks the bitcoin blockchain to verify the amount of bitcoin held by each bitcoin private key, and also checks that the private keys it contains map properly to the public bitcoin keys used to view the balance on the device when it is connected to the internet.

DA Bomb

Directly Available Bitcoin On Metal Banknote (Da Bomb)
Bitcoin Metal Wallet Cold Storage on BTC Blockchain. A Crypto-Currency version of money, which may be exchanged for fiat currency.
Other major cryptos such as Ethereum , LiteCoin, and Bitcoin Cash may be substituted for bitcoin without affecting the usefulness of this offering. These versions will come out later, using the same physical format. (hopefully patented)
The design of the card should be modified enough from any existing patents to be patentable itself. The manufacturing, loading and documenting of the card should be done by proprietary and open-source software. This process should be patented as well or be part of the same patent.
These are physical BTC coins, in the form of a metal card the size and shape of a credit card. The Bitcoin Wallet is composed of two sets of engraved alpha-numeric and QR codes highlighted by black ink. One set is public and is on the outside of the card. A pull-tab almost exactly like the kind on a soup can is removed from the front of the card to reveal the inner contents . This is the engraving of the private key which is required to spend the BTC. Viewing it or detecting the exact nature of this code is equivalent to ownership of the associated BTC.
The public key on the outside of the card is used to deposit to or send to the card. In normal operations the card would come loaded with a certain amount of BTC.
The cards will be protected by security features and the quality control process during their manufacture.
The cards will be dipped in a coating of compounds to indicate a unique identity for each card, with short lengths of coloured fibres and paint floating on the surface of the clear lacquer compound and creating a unique visual identity. Each card is photographed and the image file uploaded to a database with the blockchain address and item id from manufacture all associated together.
A label is created and affixed to the outside of the card. On it are the blockchain address, photo of the untampered card, and amount of BTC deposited to card.
The private keys are not retained in file form at the manufacturer’s facility, or recorded in any way.
Before the key is deleted from memory and fully erased from all data storage devices, the photo of the engraving of it is compared to the key via character recognition software. When photo verifies as true then key is deleted from memory. Now the card is tracked by my own “in-house” item id, linked in the database to the blockchain address which displays the public key, and the photo file of the card. The card is photographed twice, the photo of the private key is deleted just after verifying the engraving matches the private key. The photo of the exterior of the card showing the paint lines and fibre positions on the card is kept on file. The offline computer takes the photo of the private key, the online computer takes the photo of the card after dipping.
The card is meant to circumvent the horribly high fees associated with using BTC as a payment method. Possession of the card is deemed to be legally equivalent to the ability to spend the associated BTC available via the private key. The nature of the tamper proof and hack proof aspects of the card manufacture lends credence to the continued value of the card as it is passed through consecutive transactions. The fees which would have been normally paid to enable these transactions on the Blockchain, will now have been saved by the people utilizing the physical Bitcoin cards. The Bitcoin transactions on the Blockchain are enabled by paying fees to “bitcoin miners”, who use large amounts of energy and computing power to solve complicated mathematical problems in order to process transactions and also to earn newly created bitcoins, of which there will only ever be 21,000,000. The fees for bitcoin transactions have become so high that paying for an item with bitcoin wouldn’t make sense for anything under $280 or so; and you had better be rich enough not to care about the $30 to $75 fee to buy just about any size purchase.
Instead of this, cold wallets containing small denominations of BTC can be exchanged via strong encryption and sending password and wallet via different delivery modes; or by physical bitcoin wallets.
At any time one may pull the tab on the metal card and reveal the private key, in order to obtain control of the BTC for use in a different cold wallet, or an online wallet. You will now have to pay transaction fees as per your new wallet details.
There is an instant financial advantage as soon as a group of people trust the value of physical bitcoin in transactions. All the miner fees for each transaction done with physical bitcoin are saved by the group. These transactions are valued in BTC, worth real dollars if exchanged for dollars; but with the dollar value always changing.
Volatility is a fact of life with Bitcoin (BTC), but the market has always trended upwards if you wait long enough. And the value has often nose-dived as well, in an unpredictable manner. A lot of people are holding (or “hodling”) BTC as a very risky and speculative investment, hoping the price will go up.
There is a great demand for bitcoin and that demand is going to increase in the near future.
How will I pay to load the BTC on to the cards? The cards will be loaded on an “on-demand” order process. The cards can be made up to a certain stage, where they have been dipped in tamper-proofing but not yet labeled. Up to this point they can be any denomination (amount) of BTC. When the payment for the order is taken at the online website then the card is loaded, labeled and shipped to the customer.
Besides the metal coin wallets denominated in various amounts of BTC; there will be “piggy-bank” versions of the card available. The BTC is loaded onto the card via the visible wallet public key engraved on the front of the card. The card owner can be paid debts owed to him via the public key. The card owner can send any amount of BTC to this receive address and it will become associated via the blockchain with the private key hidden inside the card. To spend the BTC loaded onto the card he will have to view the private key and send it to the hot wallet he uses online. Technical advice about fees, security, hacking and safety will be available at the company website, as well as many other helpful resources.
The denominated versions of the card are identical to the piggy-bank versions except for the label. The label covers the “receive” address on the denominated versions, as no further deposits to the blockchain are needed. The label on the piggy-bank version doesn’t cover the public key address, has a photo of the card and the manufacturer’s ID number. It also has a link to the Blockchain.info webpage associated with the public key address. Anyone with this address can see how much BTC is associated with the Public Key shown here.
Thus the intact tamper-proof BTC Card can be used with confidence, as the public key can be viewed on the Blockchain by anyone. As long as the amount on the card label matches the amount shown on the Blockchain.info webpage then the card’s private key can be trusted. This renders the card a form of “trust-less” currency equivalent to legal tender in value and usefulness .
The card format and manufacturing process is tested to obtain a hack proof product. The private key is not detectable by examination or any technical means without opening the pull-tab. This is essential to prevent theft and fraud. The card can not be opened, viewed , and sealed again.
A card without a label would be suspect, a card which had been opened and re-sealed obvious. Checking the blockchain address reveals the status of the BTC in question in any event.
The manufacturing process is outlined below:

The engraving is deep enough to be permanent but still not detected while wallet card is in closed position. The alpha-numeric and QR code versions of the keys are engraved and inked.
After the engraving, the private key is deleted from memory of the engraving controlling computer. This computer is never connected to the internet. Only verified software is used on this computer.
A separate computer controls the camera, label maker, and database connection to the internet.

The same file is used to generate the labels.
Addresses are checked for BTC before coin Cards are offered for sale. A second stamp is placed on label when transaction confirms.
Coin is offered for sale at Amazon.com if allowed.
Coins can be exchanged as if fiat currency, with full confidence in BTC amount displayed on seal.
Sale price on Amazon will reflect BTC amount cost when loaded- possibly a great deal if BTC has gone up since loading, or actual cost of production plus 2%, plus miner fee and distribution fee.
Savings could be significant if BTC surges in value after coins are minted. coins are bought at time of minting by purchases of BTC at market price.
“Would you like to buy some free money?”
Demand for product is assured, as the value once for sale at Amazon increases over time. You will not be able to find cheaper bitcoin anywhere, sometimes. A small portion of my stock at Amazon will remain on sale at a very low price when the Bitcoin price rises. I plan on adjusting the price of my stock to reflect the current price of Bitcoin at the time; but not all of it, and not immediately. Every time the price of BTC increases by 10%, I will reset the price of my cards to initial values.
The initial values are the current price of BTC plus 2% , miner fees and distribution costs. As the market price increases after loading the cards, they are more and more of a deal for the customer.
This forms the basis of a great promotional value to sell the metal card coin wallets.
The profit.
Profit is calculated to be 2% of the BTC value when minted. Values from 0.001 BTC to 1 BTC are minted. This generates from $0.18 Cad to $180 CAD per card depending on value. I will focus on minting in the 0.01 to 0.11 BTC range, with profits of $1.80 to $19.80 a card.
customer pays: Cost of BTC when minted
miner fees, distribution fees, 2% over cost fee, Cost of manufacture. I estimate all costs not BTC or profit to be about $11 Cad per card.
Price of card is: BTC cost + 2% + $11.00 .
After purchase the card can be traded for cash, items or value of services. Miner fees are saved by every person after the initial purchaser of the card.
I want to mint around 1000 cards a day. This averages out to $18,000 profit per day.
The plan is to produce only lower value coin wallets until cash reserves are big enough to pay for larger denominations.
Customers can order from the lower denominations in stock or special order cards of any amount that they pay for at the time, shipped after production on demand.
This involves simply loading the customer’s purchase of BTC onto the card address and attaching the label.
As the price of BTC rises then stock available and loaded previously will be a special discount offer until the price resets after a ten percent increase in the BTC market value.
When selling the BTC coin metal cards at Amazon.com :

Card is dipped in clear sealer with paint filaments floating in dip tank. Also small lengths of coloured fibre are floating in the resin coating. The unique pattern formed is photographed and printed on label stored in database with item number. Private key is not stored.
Sell in vending machines in Japan, Airports,New York Subway System, Pizza Hut, etc.
On the Directly Available Bitcoin On Metal Banknote (Da Bomb), the blockchain webpage address of the public key is displayed. To check that BTC are in the account, just go to that page. Unless tampered with, BTC amount will match that shown on label.
Full label is artwork, denomination in BTC, photo and blockchain.info webpage address associated with public key.
This idea is patentable due to the unique packaging of the cold bitcoin wallet in a pull-tab metal card. In this writing read “coin” as “card” as well. The card is evolved out of a sardine can with a pull tab lid closure, with very short sides and pressed flat all around the edge.
The goal is to have a design where the pull tab can easily be removed by an adult. It should be hard for a child to open without being shown how. The card should be only slightly thicker than a regular credit card, and not open while in a leather wallet’s card holder.The pull tab should not open accidentally while being carried in a wallet. The pull tab will be manufactured so that it must be rotated by 180 degrees before opening. A small screwdriver, nail file or fingernail must be placed into a small slot to twist the pull tab into the correct position to open, before this it is restrained by a shallow metal lip on the top of the card.
Research and development are required for this idea to be a success. The manufacturing process, security features and bitcoin loading and labeling must all be tested and verified as hack and tamper-proof. The customer must never receive a hacked or empty or unloaded card after purchase and delivery.
Attempts at fraud by the customer will be obvious. Only Intact cards will be accepted for refund. Product must always ship in perfect condition, as customer can only return intact card for full refund, no opened, missing or tampered with cards will be credited to customer for refund, and this will be part of the agreement with the customer at time of purchase. Before refund the balance of the card must match the denomination on the label.
Notes on manufacturing process:



In the above I refer to not recording the private keys and deleting the server records as soon as the cards have been manufactured and checked for accuracy. please note that the recording of the private key for a certain amount of DA BOMB is required to power the FAST BITCOIN encrypted private key network.

thank-you
submitted by bubbleHead3 to emailcoin [link] [comments]

New Best Free Bitcoin Mining Site 2020 Earn 0 001 Btc ... Earn 0.001 Bitcoin Daily On Android Smartphone & Transfer To Paytm  Mine Bitcoin Earn Money Online Litecoin Miner - Litecoin Mining  Earn Litecoin LtcMiner v1.0 Free Profit per day 0.001 LTC 2020 New Launched Free Bitcoin Mining Site ! Earn Daily 0 ... Coinbit- New Bitcoin Mining SIte Earn 0.001 BTC Daily  0 ...

Join the program and withdraw directly to your Bitcoin Wallet, PayPal, Perfect Money and Payeer account. GET $100 NOW FOLLOW THIS 3 EASY STEPS Create Account. Join Lifegate Miner Free Earning Program by signing up to our platform and get $100 USD sign up bonus. Earn and Get Your Free Money. You will get free money worth $100 USD upon joining our platform. You can earn additional free bitcoins ... BTCProMiner is Bitcoin miner with fully automatic process. Start earning Bitcoin now! Earn 1 BTC: How to Get Bitcoins Free Instantly Without Mining Rich Quick: Today’s topic is to earn 1 BTC: how to get Bitcoins free instantly without mining get rich quick. Every parent preaches to their child do something for you why are you lazy blah blah…. Because if you want to make anything worthy then you have to consider as you need and hard work on it with honesty. Earn up to 1300 Satoshi per click / Earn from your referrals Earn free Bitcoins for viewing ads (PTC). highest paying bitcoin sites Instant Withdrawals / FreeBitcoin get Bitcoin now Payments directly to your FreeBitcoin Wallet SwissAdsPaysEth Claim Free ETH every hour. just roll the dice and earn anything between 0.00000180 ETH and 0.00184320 ETH. / Hi- The number of Ethereum you win depends ... MY BITCOIN PROFIT 0.001 BTC + $100 USD. BTC PER REFERRAL 0.001 BTC. TOTAL PEOPLE INVITED 0 Friend. FOLLOW THE INSTRUCTIONS BELOW TO GET YOUR FREE BITCOINS 1. Type the CAPTCHA correctly. 2. Click "OPEN" to get Free BTC. DO YOU WANT TO EARN MORE? Check some additional opportunity to earn below Disclaimer: All investment is subject to risk and the degree of risk is a matter of judgement and ...

[index] [23596] [31111] [40941] [42451] [875] [4271] [814] [48683] [9645] [40218]

New Best Free Bitcoin Mining Site 2020 Earn 0 001 Btc ...

New Bitcoin Mining SIte Earn 0.001 BTC Daily Link https://coinbit.cash/?partner=tipsearning Still Paying... S... How to earn money online using your android smartphone. Free bitcoin miner for your android smartphone. Earn 0.001or more than 1000 rs daily and transfer to your Paytm account. 2020 New Launched Free Bitcoin Mining Site ! Earn Daily 0.001 Bitcoin Without investment ? Site Joining Link here 👇 https://uvex.ltd/ref/shaikhsadikali New Free Bitcoin Mining Site 2019 SignUp Bonus 0.001 BTC Earn Daily 100$ Live Payment Proof Website Joining Link: https://luxmine.biz/?ref=hasnainkhanallin... hi friends here is new miner bot where u earn daily 0.001 btc without any investment and one more cloud mining site where u earn without investment bitcoin m...

#